
Undo

U-2 Statement of Purpose
U-2 What is Undo?
U-2 Change Objects
U-3 Implementing a Change Class
U-4 Using Change Objects
U-6 Change Manager
U-7 The Undo/Redo Menu Items
U-7 Updating Menu Items
U-8 Making Your Application Undoable
U-9 Text Undo

Statement of Purpose

The purpose of this chapter is to explain how the undo 
feature was added to the Draw example application. Our goal
is to enable you, an experienced NeXT application developer, 
to use the ideas presented here to add Undo to your own 
application. We've designed the Undo code so that the parts 
not directly concerned with Draw can be easily incorporated 
into your application.

What is Undo?

Undo enables a user to reverse or rollback the effects of 
previous and potentially destructive operations. This feature 



is most often used to undo an unintended or unexpected 
action, but it also lets users experiment with different 
commands to see how they work. Users can also re-issue an 
action that was previously undone. This is called ªredo.º

The most obvious manifestation of undo capability in Draw 
are two new menu items in the Edit menu. These menu items
contain the name of actions that can be undone and redone. 
In this case, actions are things like moving a Graphic, deleting
a Graphic, or creating a new Graphic. In the version of Draw 
that we've compiled for you, two menu items implement 
multiple-undo. Later on we'll show you how to easily 
implement single-level undo.

Change Objects

Before we go on, we should formalize the notion of a user 
action. There are many different kinds of user actions, but 
we're only interested in the ones that cause the state of a 
document or an important part of the application to change. 
If your application uses documents like Draw, then any 
operation which would normally cause the document to 
become ªdirtyº should be undoable. Even if your application 
doesn't use documents, you can still make the editing in your
text fields undoable.

From now on, instead of talking about user actions, we'll refer
to undoable user actions as ªchanges.º In fact, there's a class
called Change that is used to represent changes. Each time 
the user does something that's undoable, the application will 
create an instance of a subclass of Change, which we'll call a 
ªchange object.º



Each change object encapsulates all the information 
necessary to undo and redo its corresponding user action. A 
simple example is a change that represents a modification to 
the floating point value of a control. The change object for 
this action would need to record which view got modified, the
value before the change, and the new value after the change.
Undoing the change is a simple matter of copying the old 
value back into the control, while undoing the undo (redo) 
requires that you re-copy the new value into the control.

Implementing a Change Class

To see how this works, lets implement a simple Change class 
called FloatValueChange. Here's the interface:

@interface FloatValueChange : Change
{

id myView;
float oldValue;
float newValue;

}

- initView:changedView;
- saveBeforeChange;
- saveAfterChange;
- undoChange;
- redoChange;
- (const char *)changeName;

@end

As described above, the instance variables record the view 
which will be modified, the original value and the new value. 
The initView: method is the designated initializer for our 



class, and the following four methods override standard 
methods found in the Change class. The last method returns 
a name string that appears in the undo/redo menu items.

The saveBeforeChange method is used to set the oldValue 
variable, while saveAfterChange sets the newValue. When 
the user wants to undo this operation, undoChange will be 
called to restore the oldValue. Similarly, redoChange copies 
newValue into myView. Here are the implementations:

@implementation FloatValueChange

- initView:changedView
{

[super init];
myView = changedView;
return self;

}

- saveBeforeChange
{

oldValue = [myView floatValue];
return self;

}

- saveAfterChange
{

newValue = [myView floatValue];
return self;

}

- undoChange
{

[myView setFloatValue:oldValue];
return self;

}



- redoChange
{

[myView setFloatValue:newValue];
return self;

}

- (const char *)changeName
{

return("Float");
}

@end

All change classes follow the same pattern as the simple one 
we just created. The change object is responsible for saving 
the state of the document, view, or whatever object is about 
to be modified, before and after the modification. It also 
needs to be able to restore the state to the way it was either 
before or after the modification.

You might have noticed that FloatValueChange doesn't know 
what the actual change is. The reason for this is that if the 
change was a complicated calculation, it could be too 
expensive or even impossible to duplicate the same 
calculation twice. So, in general, change objects have no 
knowledge about how changes are made in the first place, 
but do understand how to save and restore state information.

Using Change Objects

Obviously, things do change in a running application, so let's 
examine how modifications are made using change objects. 
The only method of our undoable control that we need to 
modify is the one that sets the floatValue. Here it is:



@implementation MyUndoControl

- setFloatValue:(float)value
{

id change;

change = [[FloatValueChange alloc] initView:self];
[change startChange];

floatValue = value;
[change endChange];

return self;
}

@end

When setFloatValue: is called, we know that some other 
part of the application wants to update the value of the 
control. The implementation above first allocates a blank 
change object and then initializes it. The call to startChange
lets the change object know that the control is about to 
modify itself. The call to startChange will eventually result in
a call to saveBeforeChange. We didn't have to implement 
startChange in our change class above because it was 
inherited from the generic Change class.

The next step is to update the internal data structures, with 
an assignment statement in this case. Finally, we let the 
change know that we're done by calling endChange which 
ends up calling saveAfterChange. This is the basic pattern 
for any modification to a data structure that should be 
undoable. Simply create an instance of the appropriate kind 
of change object and give it control before and after the 
modification is to be made.



You can write your own classes to know about change objects
from the start, but it is often more convenient to create a 
subclass that adds the change object code. This makes it very
easy to add undo functionality to an application that already 
exists, because you only have to think about undo when 
everything else already works.

Change Manager

Change objects do most of the work for you in terms of 
implementing undo. However, there's another part to the 
story. Whenever the startChange method of a change object
is called, a search is made up the responder chain to find the 
nearest change manager.

A change manager is an object that collects the individual 
change objects and makes them available to the user via the 
undo/redo menu items. The change manager is also 
responsible for freeing change objects when they're no longer
needed.

As an application runs, its change managers wait for changes
to be passed to them via the responder chain. Typically, a 
view deep in the view hierarchy for a window will create a 
change object and then call startChange. The change object
then broadcasts the changeInProgress: method on the 
responder chain. The search up the chain eventually reaches 
a change manager which replies with a saveBeforeChange 
message.

In document oriented applications, like Draw, it is very easy 



to derive your document class from the ChangeManager 
class. Since document objects are typically installed as the 
delegate of their window, the ChangeManager will govern all 
changes that occur within that particular document.

If you would rather implement application-wide undo, simply 
install a ChangeManager as the delegate of your application, 
so that all change objects are governed by the same 
ChangeManager. You can also add ChangeManagers in other 
places in the responder chain if you need to. However, it 
might be difficult to determine which ChangeManager should 
control the undo and redo menu items.

The Undo/Redo Menu Items

The ChangeManager class implements three target-action 
methods that can be connected to menu items. The first, 
undoOrRedoChange: implements single-level undo. This 
means that only the last change will be undoable, and after it
is undone, the menu shows Redo with the same change. For 
most applications, its just as easy to implement multiple-
undo as it is single-undo. 

You might consider using single-level undo if it greatly 
simplifies the user interface of your application. Also, if you 
choose not to make the creation and deletion of objects 
undoable, then you should consider using single-level undo. 
The reason for this is if you try to redo a modification to an 
object that doesn't exist (because it couldn't be re-created), 
either your application or the user could become very 
confused.



The other two methods, undoChange: and redoChange: 
work as a pair. Together these implement multiple-undo. This 
means that every change going back in time is either 
undoable or redoable, and there are separate menu items for 
undo and redo. Connect the undo menu item to 
undoChange: and the redo menu item to redoChange:.

Multiple-undo is much nicer for the user, and you should 
implement it if you can. You'll need to make the creation and 
deletion of objects undoable for the reasons mentioned 
above. You should also make sure that none of your change 
objects depend on global variables that might be modified 
between the time the change object was created than the 
time the user wants to undo or redo a change.

The file ChangeManager.m defines a constant N_LEVEL_UNDO
which tells the ChangeManager how many levels of changes 
to keep track of. To get single-level undo simply set this 
constant to 1. For multiple-undo set it to any number you like,
but give some thought to how large your change objects are 
likely to be and how much memory you can afford to spend 
on your undo history.

Updating the Menu Items

The ChangeManager class supports the validateCommand: 
method to automatically update the undo menu items after 
each change. This method is passed the id of the menu item 
to be validate. It examines the action field of the menu item 
to determine which menu item is being validated and will 
update the title of the menu item to reflect the name of the 
change to be undone or redone.



If you want to use validateCommand: then you'll have to 
use setUpdateAction:forMenu: in the MenuCell class to 
cause validateCommand: to be called when the menu is 
updated. Draw uses this technique for all menus.

The title of the menu cells are calculated from the 
changeName method of the change objects. The 
ChangeManager prepends either ªUndoº or ªRedoº as 
appropriate.

You should call [NXApp setAutoupdate: YES] to make sure that 
the undo menu items reflect the name of the last change 
after every event. This is especially important if you 
implement document-level undo. In this case, the undo menu
items need to be updated whenever the user brings a new 
document window to the top.

Making your Application Undoable

Once you understand how the undo mechanism works, it's 
straightforward to make your application undoable. Here are 
the steps involved:

1) Examine your application and determine which 
modifications should be undoable. Then create your 
subclasses of Change to represent these changes.

2) Decide where your ChangeManagers should be located. 
For document-level undo, make them delegates of your 
document objects or derive your document class from 
ChangeManager. For application-wide undo, put a 



ChangeManager behind the application object. The 
important thing is to make sure each ChangeManager is 
located on the responder chain above any views where 
change objects will be created.

3) Modify your existing code to create change objects for 
each user action to be undoable. The easiest way to do this
may be to create an undoable subclass of each view that 
causes changes, like the UndoText subclass of Text in the 
Draw example. Then you can simply override the methods 
that update data structures to be like setFloatValue: 
above. Another option is to add change code directly to 
each view class, which is what we did with GraphicView in 
the Draw example. 

4) Decide whether you want single-level undo or multiple-
undo. For single-level, add one new menu item and 
connect it to your ChangeManager with the 
undoOrRedoChange: method. Do this in Interface 
Builder. If you want multiple-undo, create two new menu 
items that are connected to the undoChange: and 
redoChange: methods. Make sure that the update actions
of these menu items are set to validateCommand:.

5) Make sure that the Change and ChangeManager classes 
along with all your new change classes are linked into the 
application. After you recompile, you application will have 
undo!

UndoText

To further simplify your life, we have created a subclass of 



Text called UndoText. This class takes care of the chore of 
making text editing undoable. To use it, simply use an 
UndoText object where you would normally use a standard 
Text object. In the presence of a ChangeManager, you'll get 
undoable text. If there isn't a ChangeManager above 
UndoText on the responder chain, it will work just like the 
normal Text object. The UndoText class in Draw overrides 
selected Text object methods, making all the Draw 
application interactions with the Text object undoable. If your 
application uses other features of the Text object you may 
need to override a few more methods in UndoText.


